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1 Introduction

This paper is a survey of some new techniques and new results on sufficient conditions in terms
of the Schwarzian derivative for analytic functions defined in the unit disk to be univalent. Along
with univalence we consider the questions of quasiconformal and homeomorphic extensions of the
mapping.

Let f be analytic and locally univalent. Its Schwarzian derivative is

Sf =
(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

.

If u = (f ′)−1/2 then

u′′ +
1
2

(Sf)u = 0.

Conversely if u is a solution of
u′′ + pu = 0 (1.1)

and
f(z) =

∫ z

z0

u−2(ζ) dζ (1.2)

then Sf = 2p. We recall the chain rule

S(f ◦ g) = ((Sf) ◦ g))(g′)2 + Sg (1.3)

and that the Schwarzian is identically zero exactly for Möbius transformations. Let D denote the
unit disk.

There has been progress in several areas, but the innovations we treat here come primarily
from an injectivity criterion for conformal, local diffeomorphisms of an n-dimensional Riemannian
manifold into the n-sphere. The criterion involves a generalization of the Schwarzian derivative
which depends both on the conformal factor of the mapping and on the underlying Riemannian
metric. The scalar curvature of the metric and the metric diameter of the manifold enter as bounds
for the Schwarzian. A majority of the known classical univalence criteria follow from this general
result.

The proof of the general criterion synthesizes several key ingredients that are present in the
proofs of many classical criteria, most particularly the Sturm comparison theorem for second order
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ordinary differential equations, applied to (1.1). Comparison theorems can be considered as state-
ments about convexity, and this turns out to be the essential notion through which we would like
to understand and explain the phenomena of univalence and extensions.

2 The Nehari Class and the Ahlfors-Weill Extension

Nehari’s theorem of 1949 in [11] is perhaps the best known univalence criterion, and its connection
to quasiconformal mappings discovered in 1962 by Ahlfors and Weill [1] are together the model
cases for other classical crtiteria and their generalizations. Instead of beginning with the very
general formulations now available we would therefore like to highlight the new ideas in the context
of these two fundamental results.

Theorem 1 (Nehari, Ahlfors-Weill) If f is analytic in D and

|Sf(z)| ≤ 2
(1− |z|2)2

, z ∈ D, (2.1)

then f is univalent. If

|Sf(z)| ≤ 2t
(1− |z|2)2

, z ∈ D, (2.2)

for some 0 ≤ t < 1 then f has a 1+t
1−t -quasiconformal extension to Ĉ = C ∪∞.

We let N be the set of all (univalent) functions that satisfy (2.1) and we call it the Nehari Class.
N is a large class of functions, containing, for example, all convex conformal mappings, i.e., those
mappings with a (euclidean) convex image, [17], [12].

There is an interpretation of (2.1) in terms of convexity in hyperbolic geometry. Let f ∈ N ,
Ω = f(D) and let λΩ|dw| be the Poincaré metric of Ω. From calculations to be discussed in the
next section – based essentially on a generalization of the differential equation (1.1) – it follows that
λ

1/2
Ω is a hyperbolically convex function on Ω. This means that λ1/2

Ω is convex, in the usual sense,
along all hyperbolic geodesics in Ω, or equivalently that the Hessian of λ1/2

Ω , computed with respect
to the Poincaré metric, is positive definite. Since (2.1) is invariant under Möbius transformations
of the image, this convexity property is true for all Möbius shifts, M(Ω). This Möbius invariant
hyperbolic convexity turns out to be equivalent to (2.1).

Nehari’s proof related the univalence of f to the disconjugacy of solutions of (1.1). An upper
bound on the Schwarzian allows one to invoke variants of the Sturm comparison theorem. Normal-
izing via Möbius transformations of the range and domain are possible because of the chain rule
(1.3) and Schwarz’s lemma, according to which

(1− |w|2)2|Sf(w)| = (1− |z|2)2|S(f ◦ g)(z)|, w = g(z) = eiθ
z − ζ
1− ζ̄z

.

There were three elements in the proof of the Ahlfors-Weill result. First, one can consider f(rz),
r < 1, and assume that a function satisfying (2.2) is analytic on D. This is then later removed by
taking a limit as r → 1. Second, and most remarkable, is an explicit formula for the extension:

Ef (z) = f(z) for |z| ≤ 1, f(ζ) +
(1− |ζ|2)f ′(ζ)

ζ̄ − 1
2

(1− |ζ|2)
f ′′

f ′
(ζ)

, ζ = 1/z̄, for |z| > 1. (2.3)
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The complex dilatation of Ef at a point z outside the disk is

µEf
(z) = −1

2

(
ζ

ζ̄

)2

(1− |ζ|2)2Sf(ζ), ζ = 1/z̄. (2.4)

From this and (2.2) the complex dilatation is bounded by t < 1, and Ef will be proved to be
quasiconformal once we know that it is a homeomorphism. This is then the third point in the
argument, for (2.2) also imples that Ef is a local homeomorphism. Its range is Ĉ and hence by
the Monodromy Theorem it is a global homeomorphism. Note that regularity on D is essential
in analyzing the continuity of the extension at the boundary. Note also that the proof gives no
information on what happens to the extension in the limiting case as t→ 1.

The steps in the Ahlfors-Weill proof have been superceded, and the extension Ef does more
than advertized. To explain, we first recall some results from an important paper of Gehring and
Pommerenke in 1985, [10].

We adopt the terminology from [5] and say that f is an extremal function for (2.1) if f(D) is
not a Jordan domain. This is the case for the mapping

L(z) =
1
2

log
1 + z

1− z

onto a parallel strip, for which SL(z) = 2/(1−z2)2. The image is not a Jordan domain, and neither
is (A ◦ L ◦ B)(D) for any Möbius transformation A and any Möbius automorphism B of D. Such
Möbius conjugates of L are the only extremals in N :

Theorem 2 (Gehring-Pommerenke) If f ∈ N then f has a continuous extension to D. The
function L is the unique extremal function in N up to Möbius transformations of the range and of
D onto itself.

By suitable normalizations and use of comparison theorems one can establish a logarithmic
modulus of continuity for f , and this suffices to prove the continuity up to the boundary. This
replaces the first part of the Ahlfors-Weill argument, and we will add some further remarks in
Section 3.

We let N∗ be the set N minus all Möbius conjugations of the extremal L. Thus if f ∈ N∗ then
f(D) is a Jordan domain, and so, for topological reasons, has a homeomorphic extension to Ĉ. In
fact, (2.3) already gives a homeomorphic extension when f ∈ N∗, that is for t = 1 in (2.2). This is
the main new result in this section and we explain now where it comes from.

Let f ∈ N and let Ω = f(D). Again we let λΩ|dw| be the Poincaré metric of Ω. Define

ΛΩ(w) = w +
1

∂w log λΩ(w)
, (2.5)

where

∂w =
1
2

(
∂

∂u
− i ∂

∂v

)
.

Thus ΛΩ(w) moves away from w by a vector in the direction∇ log λΩ(w) of magnitude 2/|∇ log λΩ(w)|.
When f ∈ N∗ we will show that ΛΩ is a reflection across ∂Ω; we think of it as a gradient reflection.
In terms of ΛΩ the Ahlfors-Weill extension is

Ef (z) = f(z) for |z| ≤ 1,ΛΩ(f(ζ)), ζ = 1/z̄, for |z| > 1. (2.6)
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Whatever mapping properties (2.6) is to enjoy must already be present in ΛΩ. For example, if
ΛΩ is to be injective, then the Poincaré density λΩ must have at most one critical point, because
such a point will be mapped under ΛΩ to the point at infinity.

ΛΩ has the important property of being conformally natural. This means that

ΛM(Ω)(M(w)) = M(ΛΩ(w)), w ∈ Ω (2.7)

for any Möbius transformation M . We conclude from this that for ΛΩ to be injective the density of
the Poincaré metric must have at most one critical point for every shift of the image by a Möbius
transformation. This goes the other way too, for if ΛΩ(w1) = ΛΩ(w2) for two distinct points then
some Möbius transformation takes this common value to infinity, showing that the density of the
Poincaré metric of the shifted domain has at least two critical points.

Next, suppose that λΩ has a unique critical point. We claim that Ω is bounded. The proof of
this uses the fact that the hyperbolic convexity of λ1/2

Ω in Ω is equivalent to the function

uf (z) =
1√

|f ′(z)|(1− |z|2)
(2.8)

being hyperbolically convex in D. The corresponding critical point in D may be assumed to be the
origin. We thus have a convex function with a unique critical point, whose growth is therefore at
least linear. This gives a lower bound in (2.8), and the resulting upper bound for |f ′| is of the form

|f ′(z)| ≤ (1− |z|2)
(a+ bL(|z|))2

= − d

d|z|

(
1

b(a+ bL(|z|))

)
,

where a and b are positive constants depending on f . This shows that f is bounded. So Ω is
bounded and the unique critical point is sent by ΛΩ to infinity. This is an interesting global
conclusion to draw. The Möbius invariant formulation of this result is that, if for every Möbius
shift of Ω the density of the Poincaré metric has at most one critical point, then ΛΩ takes values
in the complement of Ω.

What about the boundary behavior of ΛΩ? Again, the assumption is the absence of multiple
critical points in every Möbius shift. A convex function with a unique critical point not only
has at least linear growth, but its radial derivative moving away from the critical point must be
bounded away from zero outside some small disk centered at the point. Since all is computed in
the hyperbolic metric, this means that

1
λ
|∂wλ1/2

Ω | ≥ c > 0

away from the critical point. Thus

|∂w log λΩ| ≥ 2cλ1/2
Ω , (2.9)

which proves that ΛΩ is the identity at the boundary because λΩ → ∞ there when the domain is
bounded. We mention in passing that the exponent 1/2 in the estimate above is sharp for functions
in N∗.

To summarize, starting with f ∈ N , Ω = f(D), if the density of Poincaré metric of every
Möbius shift of Ω has at most one critical point, then ΛΩ is a reflection across ∂Ω. When does this
happen? Suppose that for some Möbius shift of Ω there are two critical points. By convexity, the
hyperbolic geodesic joining them must consist entirely of critical points. Back in D that geodesic
can be taken to lie along the real axis, and it is then easy to see that the original function f must
be Möbius conjugate to the logarithm L. We can therefore now state, [4]:

4



Theorem 3 If f ∈ N∗ then the Ahlfors-Weill extension Ef is a homeomorphism of the sphere to
itself.

The Ahlfors-Weill theorem itself follows immediately by virtue of the formula (2.4) for the
complex dilatation.

Notes Using comparison theorems requires not just the differential equation u′′+ qu = 0 but
also initial conditions. Typically one sets up the problem, in the disk, with u(0) = 1 and u′(0) = 0.
With f as in (1.2) one then has f(0) = 0, f ′(0) = 1 and f ′′(0) = 0. In terms of the Poincaré metric
the condition f ′′(0) = 0 translates exactly to log λΩ having a critical point at f(0).

See [3] for some uses of comparison theorems to prove distortion theorems for the class N . One
useful fact that comes out of that work is that it is possible to normalize a function f ∈ N , by a
Möbius transformation, to have f ′′(0) = 0 without introducing a pole. We also refer to [7] and [6]
for further mapping properties of functions in the Nehrai class and its generalizations, especially in
relation to John domains. We will not review the particular results here because we want to stay
close to the theme of using convexity, and concentrate on the general geometric methods. See also
[13] for more background on the Schwarzian.

3 A General Univalence Criterion: Extensions and Extremals

The title of this section comes from the paper [5]. Our intention is now to show how univalence,
homeomorphic and quasiconformal extensions and convexity play out in a more general setting.
We work with conformal metrics on D and with a generalized Schwarzian derivative.

Let g be a metric (tensor) on D and let g0 = |dz|2 denote the euclidean metric. For a smooth,
real-valued function ψ on D we define a symmetric, traceless 2-tensor

Bg(ψ) = Hessg ψ − dψ ⊗ dψ −
1
2

{
∆gψ − ‖ gradg ψ‖g

2
}
g.

The Hessian, gradient, Laplacian, and norm are computed with respect to g. If f : (D, g)→ (C, g0)
is a conformal, local diffeomorphism with f∗g0 = e2ψg, its Schwarzian tensor is defined by

Sgf = Bg(ψ).

This definition is in [15], see [16] for another approach. For the present discussion it is less important
to know all the aspects of the generalization than simply to keep in mind that the Schwarzian tensor
is computed with respect to a background metric g, and that it changes when g changes. When
there is conformal change in g the Schwarzian tensor changes in a simple way, governed by a
generalization of the chain rule, (1.3). When g is the euclidean metric Sgf can be written as the
matrix

Sgf = (ReSf − ImSf − ImSf − ReSf) .

In [14] the authors obtained a general univalence criterion in terms of Sgf that involves both
the curvature of the metric and a diameter term. Let K(g) denote the Gaussian curvature of the
metric g. In the two-dimensional case the result can be stated as:

Theorem 4 Let f be analytic or meromorphic in (D, g) and locally univalent. Suppose that any
two points in D can be joined by a geodesic of length < δ, for some 0 < δ ≤ ∞. If

||Sgf ||g ≤
2π2

δ2
− 1

2
K(g) (3.1)
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then f is univalent.

Many known criteria for univalence follow from Theorem 4 by choosing different conformal
background metrics g. Nehari’s criterion (2.1) results by taking g to be |dz|2/(1 − |z|2)2, the
Poincaré metric, with K = −4 and δ = ∞. As it turns out, the Schwarzian of f is the same in
the hyperbolic and euclidean metrics, and in computing the hyperbolic norm ||Sgf ||g one gets two
factors of (1− |z|2) because Sgf is a 2-tensor.

There is a second order differential equation that goes along with Sgf involving the Hessian of
a function associated to the conformal factor of f . The use of comparison theorems is then still
very much central to the analysis, though the geometric set-up has changed.

We consider metrics of the form
g = e2σg0.

Let f be a conformal, local diffeomorphism of (D, g) into (C, g0). If we write ϕ = log |f ′| then
f∗g0 = e2(ϕ−σ)g, and hence Sgf = Bg(ϕ− σ). We define

uf = e(σ−ϕ)/2. (3.2)

We refer to uf as the associated function. Note that if we use the euclidean metric in both the
domain and the range of f then uf = |f ′|−1/2.

A calculation, straightforward but somewhat involved, gives the following:

Theorem 5 If ||Sgf ||g ≤
2π2

δ2
− 1

2
K(g) then Hessg uf +

π2

δ2
uf g ≥ 0.

Analyzing the Hessian equation along geodesics is the main part of the proof of Theorem 4.
If the metric g is complete then δ =∞ and we only consider metrics of nonpositive curvature.

We write the condition (3.1) in the form

||Sfg||g ≤
1
2
|K(g)|. (3.3)

The conclusion of Theorem 5 is then that

Hessg uf ≥ 0,

that is, uf is a convex function on D with respect to the metric g. It may not look like it, but in the
case of the Nehari class this is precisely the statement that the function uf in (2.8) is hyperbolically
convex in D, or that λ1/2

Ω is hyperbolically convex on Ω = f(D), f ∈ N .
As with the Nehari class, the convexity is a characteristic property for functions to satisfy (3.3).

And again the nature of the critical points of uf have consequences that are global:

Theorem 6 Let g be complete and f a meromorphic function in (D, g). Then ||Sgf ||g ≤ 1
2 |K(g)|

if and only if uM◦f is convex for all Möbius transformations M . If uf has a critical point at which
uf is positive, then f is analytic. If the critical point is unique then f is bounded.
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Extension to the Boundary We assume that g is complete. A typical way to use the convexity
of uf is the following. Let γ be a geodesic in the metric g in the disk, parametrized by arclength
τ = dg(z, z0), where z0 ∈ γ is a fixed point and dg(z, z0) is distance. Since the metric is complete,
starting at z0 we can follow γ in both directions indefinitely. Let γ+, γ− denote these two halves.
Suppose that the derivative of uf at z0 in the direction of γ+ is positive, say b > 0, Convexity
implies that uf will grow at least linearly along γ+, that is,

uf (z) ≥ a+ bdg(z, z0),

or
|f ′(z)| ≤ eσ

(a+ bdg(z, z0))2
= − d

ds

1
b(a+ bdg(z, z0)

, (3.4)

where s is the euclidean arclength. This implies that the integral∫
γ+

|f ′(z)||dz| (3.5)

is finite, which implies that f(z) has a limit as z tends to the boundary ∂D along γ+.
The finiteness of the integral (3.5), together with a very natural geometric condition on the

behavior of the geodesics near the boundary, allow us to generalize to this setting the result of
Gehring and Pommerenke regarding continuous extension to the closed disk. The necessary geo-
metric condition, which we must take as an assumption on the metric, appears frequently in areas
of differential geometry concerned with the ‘visibility’ of a boundary at infinity. We formulate it
as follows:

Definition The complete metric g on D has the Unique Limit Point property (ULP) if:
(a) Let z0 ∈ D. If γ(t), 0 ≤ t < T ≤ ∞ is a maximally extended geodesic starting at z0 then
limt→T γ(t) exists (in the euclidean sense). We denote it by γ(T ) ∈ ∂D.
(b) The limit point is a continuous function of the initial direction at z0.
(c) Let ζ ∈ ∂D. Then there is a geodesic starting at z0 whose limit point on ∂D is ζ.

The problem of extending the map to D is local, and we work on sectors defined by a vertex
z0 near the boundary and all geodesics emanating from z0 toward the boundary. For small enough
angle of the sector at z0, and with a proper normalization of the mapping f , we can achieve that
the derivative of uf at z0 in the direction of any of the geodesics is (uniformly) positive. This
ensures at least a linear growth of uf along each geodesic. By (3.4) and (3.5) all integrals∫

γ+

|f ′(z)||dz|

for γ+ in the sector will be finite. The limit limz∈γ+ f(z) must lie on the boundary of the image,
and it is not difficult to show that it depends continuously on the direction of the geodesic γ+ at
z0. This shows that (locally) the boundary of the image can be continuously parametrized, which
ensures the continuous extension of the mapping f .

This result also holds when the metric is not complete, but the argument is more involved. We
mention also that in specific cases, the bound for |f ′| obtained from (3.4) can be used to show
directly that the mapping f is Hölder continuous, or even Lipschitz.
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Extremal Functions The fact that a function satisfying (3.1), in both the complete or incom-
plete case, admits a continuous extension to the closed disk motivates the definition of extremal
function for the criterion. This is a function satisfying (3.1) which is not injective on ∂D. These
are the analogues for the general criterion of the logarithm function L. An analysis of the geometry
of extremal functions depends on being able to join by a geodesic in D the points on ∂D where
injectivity is lost. We call this an extremal geodesic. Again, we need to assume that such joining
of boundary points is always possible, and we adopt the following definition:

Definition The metric g on D has the Boundary Points Joined property (BPJ) if any two points
on ∂D can be joined by a geodesic which lies in D except for its endpoints.

We assume again that the metric g is complete. Suppose f is extremal, with f(ζ1) = f(ζ2),
|ζ1| = |ζ2| = 1. Via a Möbius transformation we may assume that the common value of f is
the point at infinity. But then the associated function uf must be constant along the geodesic
γ joining ζ1, ζ2, for otherwise, by the finiteness of, say, (3.5), one of f(ζ1), f(ζ2) would be finite.
Some technical considerations imply that the constant value of uf along the extremal geodesic is
its absolute minimum. Therefore, the gradient of uf vanishes identically along γ, which provides
enough information to characterize the extremal function along the curve. In particular, one shows
that equality must hold in (3.3) along γ. Thus, for example, if strict inequality holds in (3.3), then
the image is a Jordan domain.

We want to emphasize this last point in connection with our use of the term ‘extremal’. An
extremal function satisfies (3.3) (or (3.1) in the incomplete case) with equality along an extremal
geodesic. However, equality can hold in the criterion along some geodesic without the function
being an extremal. For example, for Nehari’s criterion (2.1) the interval (−1, 1) is an extremal
geodesic for the (extremal) function

L(z) =
1
2

log
1 + z

1− z
.

But we also have |Sf(z)| = 2/(1− |z|2)2 along (−1, 1) for the function

f(z) =
1√
2

(1 + z)
√

2 − (1− z)
√

2

(1 + z)
√

2 + (1− z)
√

2
, Sf(z) =

−2
(1− z2)2

,

and f(D) is a Jordan domain, in fact a quasidisk. Hence, in our sense, f is not an extremal function
for Nehari’s criterion.

Finally, a geometrically striking fact is that the image of an extremal geodesic under an extremal
function is a euclidean circle. It lies in the image domain except for one point, the point on the
boundary of the image which is the image of two points on ∂D where the function is not one-to-one.

Reflections, Homeomorphic, and Quasiconformal Extensions We now construct an ex-
tension modeled on the Ahlfors-Weill formula (2.5), (2.6). We can do this in general only when the
metric g is complete, which we again assume. Let f satisfy (3.3) and let Ω = f(D). We define a
function ρ on Ω by the equation

f∗(ρ2|dw|2) = e2σ|dz|2. (3.6)

In other words,
ρ(f(z))|f ′(z)| = eσ,
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or
ρ(f(z)) = u2

f (z). (3.7)

By (3.6), f is an isometry between the two given metrics, and by (3.7), ρ1/2 is convex in the metric
ρ2|dw|2.

Now set
ΛΩ(w) = w +

1
∂w log ρ

, (3.8)

and define an extension, as before, via

Ef (z) = f(z) for |z| ≤ 1,ΛΩ(f(ζ)), ζ = 1/z̄, for |z| > 1. (3.9)

ΛΩ is again conformally natural, which, together with the convexity of ρ1/2, allows us to proceed
with the analysis of the mapping properties of the relfection ΛΩ as in the case of the Nehari class.
The working hypothesis is that for all Möbius shifts of f , the induced convex function ρ1/2 has
at most one critical point. This implies that ΛΩ is one-to-one, and that it assumes values in the
complement of the closure of Ω. An estimate analogous to (2.9), together with completeness of the
metric, implies that ΛΩ is the identity on ∂Ω. One thus obtains:

Theorem 7 The mapping Ef in (3.9) is a homeomorphic extension of f if and only if for every
Möbius shift the convex function ρ1/2 has at most one critical point.

If for some Möbius shift the convex function possesses two critical points, then the entire geodesic
segment joining them must consist of critical points. As in the analysis of extremal functions, this
implies equality in (3.3) along some geodesic segment in D. In particular, we can conclude:

Corollary 1 If strict inequality holds in (3.3) then the extension Ef is a homeomorphism.

It is natural to ask whether the failure of the extension to be a homeomorphism occurs exactly
when the image domain is not Jordan, i.e., when f is an extremal. Such was the case for the Nehari
class. The answer is yes, when the metric g is real analytic. But if the metric is just C∞ there
are simple examples showing that Ω can even be equal to D but with the associated function uf
having a geodesic segment of critical points. In the absence of real analyticity, the vanishing of the
gradient along a geodesic segment does not force its vanishing along the entire geodesic, i.e., out
to the boundary, and this is the necessary condition for the failure of univalence at the endpoints
of the geodesic.

Finally we consider the quasiconformality of the extension. As before, it is not difficult to
compute its Beltrami coefficient outside D. In absolute value it is

2
|K(g)|

||Sgf ||g.

This means that the extension Ef is quasiconformal exactly when (3.3) is replaced by the stronger
inequality ||Sgf ||g ≤ (t/2)|K(g)| for some t < 1, just as for the Ahlfors-Weill theorem.

There are several interesting questions still to address here, especially in connection with ex-
tremal functions. For example, we know something, but not much, about situations where there
is a unique extremal function, or a unique extremal geodesic for an extremal function. This is an
interesting question. In addition, for a given metric and a given geodesic γ, there is, as mentioned
above, a defining equation that characterizes when an f is extremal along γ. This equation provides
enough information so that, in principle, one can solve for f along the curve. We would like to
understand better when the map f defined on γ extends to a univalent map of D which satisfies
(3.3). By construction it will produce equality in (3.3) along γ.
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Techniques for Incomplete Metrics Recall that the full statement (3.1) of the general in-
jectivity criterion allows for incomplete metrics, with the diameter term appearing as part of the
bound for the Schwarzian tensor. Several of the results in the previous paragraphs do work for
incomplete metrics, for example continuous extension to D and the analysis of properties of ex-
tremal functions. What does not go through without modification is the work on homeomorphic
and quasiconformal extensions.

This is a genuine issue. For example, in Nehari’s original paper with (2.1) he also proved the
very simple univalence criterion

|Sf(z)| ≤ π2

2
. (3.10)

which, in turn, is actually the easiest case of the general criterion (3.1); take g to be the euclidean
metric on D – curvature 0, diameter 2. Furthermore, it follows from another result of Gehring
and Pommerenke, in the same paper cited earlier, that the image of D by a function satisfying
(3.10) will, in fact, be quasidisk as long as it is a Jordan domain. Such an f does then have a
quasiconformal extension, but it is not the Ahlfors-Weill extension. However, a modified version of
Ahlfors-Weill works. The full details are in [2], but we sketch the main points here.

To begin with, the function
F (z) = tan

(π
2
z
)

is, up to rotations of D and Möbius transformations of the image, the only extremal function for
(3.10). It also determines a complete, radial, metric on D by

F ′(|z|)|dz| = cos−2
(π

2
|z|
)
|dz|. (3.11)

The usefulness of considering this metric comes from following lemma, which can be considered as
a sharpening of the Sturm comparison theorem.

Lemma 1 (Relative Convexity) Let u, v, and q be defined in [0, 1) and suppose that

u′′ + qu ≥ 0, (3.12)

and that
v′′ + qv = 0. (3.13)

Then the function
w = (

u

v
) ◦ F−1

is convex, where F is defined by F ′ = 1/v2.

Recall from the introduction that a function f with Sf = 2p can be written as the integral

f(z) =
∫ z

z0

u−2(ζ) dζ,

where u′′ + pu = 0. In the case |2p| ≤ π2/2 = SF = 2q, the lemma implies that√
F ′(|z|)
|f ′(z)|
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is convex along rays from the origin, but when the rays are parametrized by arclength of the metric
(3.11). In other words, the associated function uf of f relative to (3.11) is radially convex. A little
more effort gives the full convexity on D, and that a function satisfying (3.10) must also satisfy the
general criterion (3.3) with the complete metric (3.11). The condition takes the form∣∣∣∣ζ2Sf(z) +

π2

4
tan2

(π
2
|z|
)

+
π

2
1
|z|

tan
(π

2
|z|
)
− π2

4

∣∣∣∣ ≤ π2

4
tan2

(π
2
|z|
)

+
π

2
1
|z|

tan
(π

2
|z|
)

+
π2

4
.

The maximum principle implies that for nonextremals it must be that

|Sf(z)| < π2

2
,

which in turn implies a strict bound in the big inequality, above. Hence by Corollary 1, the
gradient extension defined by (3.8) is a homeomorphism. Unfortunately, the reflection, and hence
the corresponding extension Ef , will in general fail to be quasiconformal in a neighborhood of ∂D;
the magnitude of the complex dilatation can tend to 1.

Here is where one can modify the construction. To overcome the failure of quasiconformality
at the boundary, we perturb the metric (3.11), to one of the form

F ′(|z|)α|dz| ,

where α < 1 must be chosen sufficiently close to 1, and depending on the given nonextremal function
f . In terms of f the reflection takes the form

Λ(z) = f(z) +
2|z|f ′(z)

απ

2
tan

(π
2
|z|
)
− |z|f

′′

f ′
(z)

.

The parameter α can be chosen independent of f if the nonextremal function satisfies the stronger
inequality |Sf(z)| ≤ tπ2/2 for some t < 1. Then Λ will give a quasiconformal reflection in the
image for any α with max{1/2, t} < α < 1.

The full arguments supporting these facts, which apply to more general criteria than (3.10), are
rather technical. We refer to [2].

Notes The conditions (ULP) and (BPJ) must be hypotheses in many of our results, but they
are not restrictive conditions on a metric. Several sufficient conditions are given in [5].

It would take us too far afield to discuss the important work of C. Epstein. Though in a different
direction, it has been very influential on our own work. We refer to his papers [8] and [9].
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